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ABSTRACT 

Son-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear 
interaction of long wavelength gravitational and scalar fields. Long wavelength fields have 
spatial gradients a-‘r small compared to the Hubble radius, and they are described in 
terms of classical random fields that are fed by short wavelength quantum noise. Lattice 
Langwin calculations are given for a ‘toy model’ with a scalar field interacting with an 
exponential potential where one can obtain exact analytic solutions of the Fokker-Planck 
equation. For single scalar field models that are consistent with current microwave back- 
ground fluctuations, the fluctuations are Gaussian. However, for scaies much larger than 
our observable Ijniverse, one expects large metric fluctuations that are non-Gaussian. This 
example illuminates non-Gaussian models involving multiple scalar fields which are consis- 
tent with current microwave background limits. 
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1. INTRODUCTION 

There are a growing number of cosmological observations’-’ that are in apparent conflict 
with the simplest model of structure formation, the Cold Dark Matter model. One possibil- 
ity is that the Gaussian initial conditions described by a Zeldovich scale-invariant spectrum 
that typically arise from inflation are incorrect. The view that will be adopted here is 
that the in&ion model is basically correct although one should refine the calculations 
to incorporate nonlinearities among multiple scalar fields. As the first step, nonlinearities 
will be incorporated at wavelengths larger than the Hubble radius. The initial conditions 
for structure formation are generated stochastically as quantum modes expand beyond the 
Hubble radius. One can then investigate whether non-Gaussian fluctuations for structure 
formation can arise from inflation. I report the results of a collaboration6*’ with J.R. Bond 
of the Canadian Institute for Theoretical Astrophysics, Toronto, Canada. 

There were two clues that indicated that the nonlinear evolution of long wavelength 
fields was tractable. (1) For a single scalar field, Bardeen, Steinhardt and Turner8 demon- 
strated using linear perturbation theory that there was a remarkable constant of integration 
C wheti ;he physical wavelength of a comoving mode exceeded the Hubble radius. (2) when 
two spatial points are separated by more than the Hubble radius, they are no longer in causal 
contact; they essentially evolve as independent Universes. Hence, linear perturbation theory 
is not essential. In a significant improvement over homogeneous mini-superspace models, 
one can in fact generalize C to nonlinear multiple fields.” 

One begins by decomposing all fields into long wavelength (denoted by a bar) and short 
wvelength components (denoted by a), 

@j(T:z) = Gj(T>r) + a$j(TJ), &(TY~) = 9pv(T3z) + 69pu(T*r), (1.1) 

where the Hubble radius, H-‘, marks the boundary between long and short. The metric 
will be assumed to have the diagonal form, 

da’ = -X2(T,z)dT2 A e2’=(T,r)((dz’)z + (dr2)2 t (dz3)‘), 

described by a lapse function, N(T,z); and an inhomogeneous scale factor, e”(‘+). Hence, 
the dynamic effects of gravitational radiation are neglected which is typically an excellent 
approximation. The long wavelength scalar and gravitational field equations will be solved 
nonlinearly (Sec. 2) whereas the short wavelength modes will still (unfortunately) be treated 
in linear perturbation theory (Sec. 3). As the comoving short wavelength modes expand 
beyond the Hubble radius, one assumes that they become classical and they add a stochastic 
kick8-I* to the long wavelength background. 

2. EVOLUTION OF LONG WAVELENGTH FIELDS 

The long wavelength ADM equations that will be required in this report are, 

HZ = $$clw G(Jj)) 
I 

I& = -$, c l=Pf& 
t 

(2.h) 

(2.4 

AJj = R”‘NAT + AS*,. (2.lc) 
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fi is the Hubble parameter, whereas the I=I+’ J are the SC&~ field momenta. Eqs. (2.1) 
follow from the standard scalar field equations and Einstein’s equations with all second 
order spatial gradients neglected. First order spatial gradients are retained otherwise one 
is describing homoqeneou;mini-superspace which is too limited for the applications consid- 
ered. The fist two equations, the energy constraint and the momentum constraint, ‘do not 
explicitly contain noise terms, whereas the third one, the evolution equations for Jj contain 
a contributions from short wavelength quantum noise, AS+i, that have crossed the Hubble 
radius. The remaining evolution equations for Il -6 and Ef also contain noise terms but they 
are not required if one neglects decaying modes. The lapse function will be specified when 
one chooses the time parameter (Sec. 3). 

The crucial step in solving eqs.(Z.l) is to integrate the momentum constraint. The 
Hubble parameter is a function of the scalar fields and possibly the time parameter, 2’: 

. _ 
H = H(h(~),T), where ir*& = -$%($(r),T). 

1 

(If noise term is not important, one can actually show that the Hubble parameter does not 
depend explicitly on time,6 I’? 5 a(&).) F or example, the spatial derivative of the Hubble 
parameter in (2.lb) map be expanded leading to, 

!& = -$P &, 

1 

which may satisfied if one identifies the scalar field momenta with the partial derivative of 
ri as in (2.2). Substituting the momenta into the energy constraint leads to the separated 
Hamilton-Jacobi equation (SHJE), 

g2 = 2 7 (g)’ + sv!dj)9 (2.3) 

a partial differential equation which does not depend explicitly on the time coordinate nor 
on the spatiai variables. In this sense, it is a completely covariant equation. The momentum 
constraint essentially patches together the various spatial points to make one Universe. 

The separated Hamilton-Jacobi equation is se&contained. Its solution is not unique, 
but in many cases of physical interest there is typically an attractor solution to which 
almost all solutions approach. For example, for a single scalar field interacting through an 
exponential potential,‘3 

V(6) = w)exP[ - g--$1 , (2.4) 

the attractor solution6 of (2.3) is 

Rat,($) q IT(O) exp( - E$) 1 g(O) = [ 3mEy(o)k)] “’ P.5) 

The parameter p describes the flatness of the potential; inflation occurs if p > 1. Of 
course, other solutions exists but they describe the decaying mode that always appears in 
cosmological models. If one simply neglects the decaying mode, then the Hubble parameter 
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of stochastic inflation may be identified with fla,,,($ 1. an one may safely ignore the explicit ) d 
time dependence appearing in (2.2). With this additional assumption, one need not consider 
the remaining evolution equations that were dropped in (2.1). 

J.n fact, one of the big advantages of applying Hamilton-Jacobi theory to stochastic 
inflation is that growing and decaying modes are cleanly separated even when the slow- 
roll approximation is not valid. Another advantage is that gauge ambiguities are not as 
problematic as in linear perturbation theory because one does not introduce a fictitious 
homogeneous background. Since the constraints have been eliminated, only the evolution 
equations for the scalar fields, eq.(Z.lc), remain to be solved. Given the attractor solution 
of the SHJE, limL is assumed to be a known function of & through (2.2). When the time 
parameter is specified in Sec. 3, the lapse function will also be a known function of the 
scalar fields. 

The initial conditions for the long wavelength problem are generated by short wave- 
length quantum fluctuations whose wavelength exceeds the Hobble radius. By assuming 
that they become classical when they cross the horizon,9,‘0 one circumvents the problem 
of quantization of the long wavelength gravitational field which appears to be inconsistent 
beyond the semi-classical approximation .6,T However, using an exact solution of the long 
wavelength Wheeler-Dewitt equation for single scalar field with an exponential potential 
(2.4), one can nonetheless estimate that quantum gravity corrections are of the order of 

HZ 
Quantum Corrections z 4~~~, 

% 
(2.6) 

where H is the value of the Hubble parameter when the comoving scale of interest (typically 
z 3000h-‘Mpc) crossed the horizon during inflation. For single scalar field models that are 
consistent with microwave background limits, I? z 10~-smp, the correction is approximately 
one in a billion. For many models, it is then an excellent approximation to treat the long 
wavelength fields classically, although a probabilistic description is essential. 

3. QUANTUM NOISE FROM SHORT WAVELENGTH FIELDS 

Using the stochastic long wavelength formalism, one may answer questions which could not 
be adequately addressed in homogeneous mini-superspace quantum cosmology: What is 
the time parameter? What is the initial choice of the probability distribution? 

3.1 THE CHOICE OF TIME PARAMETER 

In order to describe the evolution of short wavelength quantum fluctuations on an inhomo- 
geneous long wavelength background, it provea convenient to choose conformal time + as 
the time parameter so that the long wavelength metric has the form 

ds2 = e26(T+J)(-d~2 + da? + dy’ + dz’). (3.1) 

If the fields evolve, slowly then conformal time may shown to be given by 



In practice, one empioys 
T = Ln(He”) 

as the time parameter because it is easier to apply in numerical analyses. 

(3.3) 

One can show that in linear perturbation theory about a long wavelength background, 
a Fourier mode solution for the scalar field is an excellent approximation, 

b&(7, z) = e -d(r..)eik~xe-ikr/&, 
(3.4) 

when the physical wavelength e”k-’ is much shorter than the Hubble radius, H-‘. Eq.(3.4) 
corresponds to the positive energy solution that describes the quantum mechanical ground 
state. The effects of long wavelength inhomogeneities are contained in the spatially de- 
pendent background scale factor, e -*(‘+). At very short wavelengths, metric fluctuations 
beyond the long wavelength background are not important at least in linear perturbation 
theory. The amplitude is normalized in analogy to the analysis of linear quantum fluctua- 
tions on a homogeneous time dependent background!’ where one employs the equal time 
quantum commutator relations, 

;mj(T,l),P’(T,z’)] = ie-2*63(z - z’)af. 

When the physical wavelength of a mode approaches the Hobble radius the approx- 
imate solution (3.4) breaks down, but this is precisely when long wavelength evolution 
becomes important. At the start of the timestep, XI’, one adds to the background a noise 
impulse, &S#, , which consists of all those Fourier modes that will have crossed the Hubble 
radius during the time step, 

fjj(T,Z) 4 Gj(T,z) + ASdj3 where LS+j = ri[$(T, z)] 

In (3.5), I hare used the notation, 

and I have applied the horizon crossing expression e -NT**) = R($~j(T,z))/k. Here, aj(k) 
is a classical complex Gaussian random field, 

o;(k) = aj(-k) and < oj(k)ojs(k’) >= (2T)363(k + k’)bjjr, (3.6) 

which imitates quantum fluctuations which are Gaussian in linear perturbation theory. 
The noise term (3.5) differs from the usual perturbation calculation on a homogeneous 
background in that it is modulated by the local value of the background Hubble parameter 

~[mz)]. 

The choice of time parameter (3.3) leads to the following definition of the lapse function, 

,v-' = fj&? = &/I$ + $/N = R - E& -g ($y 1 (3.i) 
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The formulation of the stochastic problem is now complete. One solves (2.1~) numerically 
on a lattice. IW end iV are expressed in terms of the attractor solution through (2.2) and 
j3.i). The noise term is given in (3.5). 

4. STOCHASTIC INFLATION LATTICE SIMULATIONS 

4.1 INITIAL CONDITIONS AND THE FOKKER-PLANCK EQUATION 

A lattice simulation of inflation begins homogeneously at T = To with &j = Jje; inhomo- 
geneities are produced only subsequently by quantum noise. If P(&jlT; Jjo, TO) denotes the 
scalar field distribution on a uniform T surface, then the initial probability distribution for 
the scalar field is a 6 function: 

P(JjlT; $jOT TO) = sn(k - $jO). (4.1) 

The probability function P is an example of a limited statistic that gives a partial under- 
standing of a complicated lattice simulation. From now on, only long wavelength fields will 
be considered and thus the bar notation will be dropped. 

For a single scalar field with an exponential potential (X4), the Fokker-Planck equation 
that describes the evolution of the probability function with the full metric back reaction 
is then 

f3P 
ar= 

--- 
(4.2) 

+ b(T - roP(@ - &I). 

The lirst term on the right hand side describes the classical drift of the scalar field down the 
potential, whereas the second, (8*/a~z)(H~,,(~)P)/(S~z), is the result of quantum noise 
that causes the diffusion of the probability function. The third term incorporates the initial 
conditions (4.1). There are factor ordering problems and other corrections associated with 
this equation,’ but I will ignore them here. The solution of (4.2) will be referred to as the 
Green’s function:r 

p(m To, 40) = 
16a 

/---& y-‘e-(‘+‘J)lY 22 Io(2z/y). (4.30) 

where IO is the modified Bessel function of order zero, 10(z) = Je(iz). The functions z(~,T) 
and y(T) are given by 

.z(qb,T) = exp($$e - s), (4.3b) 

(4.3c) 

(The coefficient H(&) should not be confused with th6 H(0) of (2.5), which it equals only 
for $0 = 0). At late times, T - To - cm, quantum diffusion is no longer important because 

6 



the stochastic force is proportionai to the Hubble parameter which decreases in time, and 
the probability distribution on the lattice evolves as a wave of fixed shape, 

T-l$Fem qm GY4+0) = f#o(dJ - $0 - *p(l &(T- W). 

The Fokker-Planck equation for an exponential potential was first analyzed by Ortolan, 
Matarrese and Lucchin’sJs who applied both analytic approximations was well as numerical 
methods. Eq. (4.3) is the ezact Green’s function solution of the improved Fokker-Planck 
equation (4.2). 

4.2 NUMERICAL SIMULATIONS 

The late time results, T - !I’~ -+ 00 of two 643 lattice simulations for a single scalar field 
interacting through an exponential potential with p=5 are shown in Figs. 1-3. In Fig. 
la. I show contour plots on a surface of constant T corresponding to -2, -1, 0, 1, 2 v 
scalar field fluctuations from the mean for a lattice simulation that began homogeneously 
with H(&) = IO-‘mp, consistent with microwave background anisotropy limits. In Fig. 
Za, only -2~ fluctuations are shown for the benefit of the reader. If one included the 
effects of beam smearing, these figures would correspond to microwave background maps at 
angular scales greater than 2“. One may actually perform a hyperwface transformation to 
show that J.4 on a uniform T slice is actually proportional to the microwave background 
anisotropy, 

~Tcmb/Tcmb = VG Cl- l/P) (WT)/w)/5 (4.4) 

In Fig. 3a, for a constant value of T, I have plotted the distribution on the lattice of 
the scalar field variable 

x = (# - 4wlH(4(O)) (4.5) 

where o,l is the classical attractor trajectory, 

c&l(T) = 4% + ~p~p(T-W. 

Agreement with the exact Green’s function solution (4.3) (broken curve) is,excellent,-and 
the distribution is Gaussian to an excellent approximation. 

Non-Gaussian fluctuations arise when the initial value of the Hubble parameter is 
comparable to the Planck scale. In Fig. 3b, I show for II(&) = l.Omp that the histogram 
of scalar field values from a lattice calculation agrees. well with the exact solution. Once 
again, contour plots for -2, -1, 0, 1, 2 g fluctuations from the mean are shown in Fig. lb 
whereas only -20 contours are given in Fig. 2b. The non-Gaussian contours look remarkably 
different from the Gaussian case, essentially because of the extended high energy density tail 
that appears in Fig. lb. These points have been able to diffuse to relatively high energy 
densities because the stochastic force is proportional to the Hubble parameter. Figs. 1 
and 2 are plotted using comoving spatial variables, z; whereas if one used physical space, 
then the high energy density regions would actually dominate the volume because they 
have almost eternally inAated.‘z In fact, a numerical instability occurs when H(&) > mp 
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(a) CONTOUR PLOTS FOR H(&,) = lo-‘rnp 

(b) iONTOUR PLzdlTS FOR I$($:; = l.Om? 

60 

Fig. 1 Contour maps 
of scalar field fluctuations 
for a two dimensional slice 
of a 643 lattice simula- 
tion for an exponential 
potential stochastic in- 
Bation model with p = 
5. The initial configu- 
rations were homogeneous, 
with H(&)/mp = IO-~ 
for (a) and H(&) = l.Omp 
for (b). The solid con- 
tours correspond to -20 
and -lo deviations from 
the scalar field mean, (i.e., 
high energy density re- 
gions) and the broken con- 
tours correspond to 0, 
1, 2~7 fluctuations. The 
mean has been subtracted 
out. The initial condi- 
tion for (a) was chosen 
to yield scalar field fluc- 
tuations that lead to struc- 
ture compatible with cur- 
rent microwave background 
anisotropy limits; the fluc- 
tuations are Gaussian- 
distributed to high ac- 
curacy. (b) is one of the 
simplest models where 
non-Gaussian statistics 
can arise in cosmology. 
The map is in initial co- 
moving position rather 
than final physical posi- 
tion and has a uniform 
value of H($)e" = e=, 
where T is the time at 
which the slice is viewed. 
Because fluctuations are 
much larger than allowed 
by present microwave back- 
ground limits, the size 
of the lattice is much larger 
than our present hori- 
zon size, and as a result 
this map has no observ- 
able consequences. 
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Fig. 3 As a check of the numerical method, the final scaiar field distributions from the 
lattice simulations of Fig.1a.b (solid histogram) are shown to agree with the exact solutions 
ofeq.(4.3) (dashed curves). For (a), with H(&) = lo-‘rap, this is a Gaussian distribution. 
Jn (b), of the initially 64a = 4086 points, 22 paths wandered beyond xsvl, eq.(4.6), and 
were discarded, as described in Sec. 4.2. Sirnula&ons with even larger H(&) have a much 
larger loss of trajectories: e.g., with If(&) = 3771 p, approximately 10% of the points are 
discarded. In single scalar field models, sign&ant non-Gaussian distributions are generated 
only if the scalar field begins with a Hobble parameter IT(&) z rnp, corresponding to a 
patch of the l&verse z 10”’ times larger than our observable patch. 

I I I I I I I I I 1 , I I 
- Scalar Field istribution for a 64’ Lattice 
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- a,=0212 He 
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2 

‘i; - - Lattice 
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because some lattice points may actually diffuse to 4 = -cc in a finite period of time.’ 
Here. I have simply removed from the lattice all those points that decrease below xcut, 

Xc”* 5 -5 p-l 
J- 87 (4.6) 

This simulation with its large initial value of the Hubble parameter cannot describe our 
observable Universe otherwise microwave background limits which are determined by (4.4) 
would be violated. In fact, the lattice size in Figs. lb, 2b is more than 10”’ times larger 
than that in Figs. la, 2a because as the scalar field rolls down from l.Omp to lo-‘mp, the 
Universe expands by a factor of 

Relative Size = (105)p-L - 10zo, for p = 5. 

The relative size depends sensitivelv on the free parameter p, eq.(2.4), which also controls 
the siope of the primordial fluctuation spectrum in the Newtonian potential,’ 

PQ” =k --l/b-~), 

p = co is the scale-invariant Zeldovich spectrum. If one normalizes the Cold Dark Matter 
fluctuation spectrum at galaxy scales. then p cannot be much smaller than 5 otherwise large 
angle microwave background limits would be violated in Figs. la, 2a.’ 

5. DISCUSSION AND CONCLUSIONS 

Theoretical large scale structure models have not kept pace with the growing number of 
cosmological observations. It is a challenge to the theorist to propose alternative scenarios 
which are cgnsistent with the observations. Here, I have summarized the first steps towards 
producing models which produce calculable non-Gaussian fluctuations from inflation. Non- 
Gaussian fluctuations can arise from nonlinear long waveiength evolution whose signature 
may perhaps be observed in the near future from microwave background fluctuations. 

Typically for single scalar field models, the nonlinear evolution of long wavelength 
fields does not produce significant non-Gaussian fluctuations in OUT observable Universe 
because microwave background anisotropy limits force the initial value of the Hubble pa- 
rameter to be quite small. However, for scales much larger than our observable Universe, 
non-Gaussian fluctuations do arise from lattice points that almost eternally inflate. The 
stochastic formalism has been sufficiently developed that one can now consider multiple 
scalar field models that produce non-Gaussian fluctuations in our observable Universe.” 

Exact solutions of Starobinski s ’ lo Fokker-Planck equation have been given for a A$‘/4 
potential by Yi, Vishniac and Mineshige (YVM). Lo In their case non-Gaussian fluctuations 
can be significant at moderate deviations from the mean -. 6~ even when H(&) w 10m3mp. 
For the case of an exponential potential, a careful numerical analysis of eq.(4.3) shows that 
non-Gaussian fluctuations are significant at 61r for H($,) > 0.02mp. (By significant. I mean 
more than a 100% change in the probability distribution from a Gaussian one.) This mild 
discrepancy may signal that a A$‘/4 IS intrinsically different than a exponential potential. 
It would be interesting to see whether one could generalize their method of solution to the 
improved Fokker-Planck equation which inciudes the full nonlinear metric back-reaction.’ 
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In any case, the YVM effect is typically smafl because microwave background limits require 
a much smaller value of the Hubble parameter, H($a) < 10m5mp. Furthermore, 2.3o 
fluctuations are typically of greater interest for the formation of galaxies.” 

In the inflation model, quantum fluctuations in the scalar field are converted into metric 
fluctuations. Hence, one ultimately, requires a quantum theory of the gravitational field if 
one wishes to extend the formalism describing inflation. However, attempts to model spatial 
variations have employed at most linear perturbations on a homogeneous background.zO~*’ 
In addition, quantization of the gravitational field using the Wheeler-Dewitt equation has 
encountered numerous difficulties including interpretation of negative probabilities, choice 
of time parameter and initial probability distribution, operator ordering problems, over- 
simplified models, etc. (consult ref. 21 for a recent review). Unfortunately, an attempt to 
a construct a quantum theory of.long wavelength fields appears to be inconsistent with the 
momentum constraint beyond the semi-classical approximation.’ In any case, one can give 
arguments that suggest that quantum corrections are typically small at long wavelengths. 
For practical purposes, one can simply assume that short wavelength quantum fluctua- 
tions become classical when the wavelength exceeds the Hubble radius. In this context, 
the Fokker-Planck equation and the associated Langevin equation have proven to be more 
useful than the Wheeler-Dewitt equation because they are solvable and because they admit 
a simple interpretation in terms of initial conditions for structure formation. 

I would like to thank J.R. Bond for a fruitful collaboration on these stochastic inflation 
lattice topics. This work was supported by the U.S. Department of Energy and NASA at 
Fermilab (Grant No. NAGW-1340). 
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